

XXII SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

BR/GDS/17 13 a 16 de Outubro de 2013 Brasília - DF

# **GRUPO - X**

# **GRUPO DE ESTUDO DE DESEMPENHO DE SISTEMAS ELÉTRICOS – GDS**

## PADRÕES DE ATERRAMENTO DE AEROGERADORES E SUA INFLUÊNCIA NA COORDENAÇÃO DE ISOLAMENTO

PABLO MOURENTE MIGUEL(\*) TGDELTA ENGENHARIA E CONSULTORIA LTDA

#### ADEMAR ALEXANDRE BREHMER ROHREGGER GEOENERGY ENGENHARIA E SERVIÇOS LTDA

## RESUMO

Este artigo apresenta a simulação de um sistema de aerogeradores durante o impacto de descargas atmosféricas. A resistência de aterramento é determinada para valores de resistividade do solo de 100 e 1000  $\Omega$ .m e são consideradas as indutâncias dos diversos trechos da instalação. O objetivo da simulação foi determinar a solicitação sobre o isolamento dos transformadores elevadores dos aerogeradores. Foi verificado que mesmo no caso de solos de alta resistividade, a forma de conexão dos transformadores à malha de terra faz com que a solicitação sobre o isolamento dos transformadores não exceda a 85% do NBI dos enrolamentos.

#### PALAVRAS-CHAVE

Aerogerador, Aterramento, Isolamento, Impulso, Transformador

#### 1.0 - INTRODUÇÃO

Nos aproveitamentos eólicos o aterramento apresenta condições extremamente dispares, com locais onde o solo apresenta baixa resistividade e outros onde a resistividade é extremamente elevada. As dimensões do aterramento dos aerogeradores tem que forçosamente ser de pequenas dimensões e assim existe uma grande dificuldade em obter-se uma resistência de aterramento de baixo valor. O objetivo na maior parte das instalações tem sido obter uma resistência de aterramento abaixo de 2  $\Omega$  na malha de terra junto à casinhola onde fica abrigado o transformador elevador. Nos parques localizados em solos rochosos, os valores obtidos em muito extrapolam esse valor. A utilização de produtos químicos para reduzir a resistência da aterramento se mostra dispendiosa e requer acompanhamento e reposição.

Neste artigo se verifica qual o efeito de valores elevados da resistência de aterramento sobre o isolamento dos transformadores elevadores dos aerogeradores durante a descarga das correntes devidas a impactos atmosféricos nas linhas aéreas ou na torre do aerogerador. O sistema de aerogeradores foi simulado de forma a determinar-se a sobretensão de impulso sobre os transformadores durante a ocorrência de um impacto de 65 kA, com a resistência de aterramento de 9,8 e 98  $\Omega$ .

# 2.0 - DESCRIÇÃO DO SISTEMA ELÉTRICO DE UM PARQUE AEROGERADOR

Um parque de aerogeradores pode ser analisado considerando a sua divisão nas seguintes partes:

- Acesso ao sistema de potência Representa a subestação onde o sistema elétrico é acessado, é formado por um ou mais transformadores de potência que elevam a tensão dos 34,5 kV usados para a conexão dos diversos agrupamentos de aerogeradores para uma tensão de 69 ou 138 kV;
- Linhas aéreas Os aerogeradores são agrupados em locais onde as condições de vento são mais favoráveis, esses grupos de aerogeradores podem distar alguns quilometros entre sí, daí ser mais economica a utilização de linhas aéreas, geralmente na tensão de 34,5 kV;

- Cabos isolados Ao chegar ao ponto onde as unidades aerogeradoras estão agrupadas, a se faz uma transição de linha aerea para cabos isolados;
- Casinhola do transformador Os aerogeradores trabalham numa tensão abaixo de 1000 V e são conectados ao sistema de subtransmissão por meio de um transformador que eleva a tensão para o nível de tensão usado na subtransmissão;
- Torre com Turbina e Aerogerador Os aerogeradores e a respectiva turbina são montados em uma torre nas proximidades da casinhola onde é abrigado o transformador.

## 2.1 ATERRAMENTOS EXISTENTES NO PARQUE AEROGERADOR

No parque de aerogeradores existem diversos tipos de aterramento, que afetarão o comportamento do sistema no que tange às sobretensões devidas a impulsos atmosféricos.

## 2.1.1..Aterramento dos transformadores de potência

Os transformadores de potência são localizados na subestação de acesso ao sistema elétrico, sendo aterrados na malha da subestação. O enrolamento de 34,5 kV dos transformadores de potência é usualmente conectado em  $\Delta$  de modo que o sistema deve ser tratado como de neutro isolado. Quando o enrolamento de 34,5 kV é conectado em Y o aterramento se faz por meio de resistor, limitando a corrente de falta fase-terra de modo a reduzir a contribuição do sistema e facilitar a recomposição do sistema após a ocorrência de faltas fase-terra.

# 2.1.2.. Aterramento dos para-raios na transição de linha aérea para cabo isolado

No ponto de transição de linha aérea para cabo isolado existe a necessidade da instalação de para-raios para proteção dos cabos isolados. Os para-raios serão aterrados em um sistema de aterramento formado por três hastes verticais espaçadas de 3 m entre si. O cabo de descida do aterramento dos para-raios apresenta uma indutância própria que pode ser estimada por:

$$L_{DPR} = \frac{\mu_0}{2 \cdot \pi} \left[ \frac{1}{4} + \ln \left( \frac{2 \cdot \ell}{r} \right) - 1 \right] \times \ell = \frac{\mu_0}{2\pi} \left[ \frac{1}{4} + \ln \left( \frac{2 \times 9}{0,0031} \right) - 1 \right] \times 9 = 14,2 \ \mu H$$

A resistência de aterramento de um conjunto de hastes instaladas verticalmente em paralelo, será dada por:

$$\mathsf{R} = \frac{\rho}{2\pi\ell} \mathsf{ln} \left( \frac{2\ell}{\sqrt[3]{\mathsf{a}\,\mathsf{S}^2}} \right) = \frac{\rho}{2\pi\times3} \mathsf{ln} \left( \frac{2\times3}{\sqrt[3]{\mathsf{0},\mathsf{0}\,\mathsf{1}\times3^2}} \right) = \mathsf{0},\mathsf{1}376\times\rho$$

Como este sistema de aterramento é de pequenas dimensões, o tempo de propagação da corrente de surto no sistema de aterramento será de 50 ns. O modelo desse aterramento pode ser visto na figura 1.



FIGURA 1 – Detalhe tipico da transição entre linha aérea e cabo isolado

### 2.1.3.. Aterramento dos transformadores dos aerogeradores

A malha de aterramento na casinhola dos transformadores deve cobrir todo o perimetro e será formada por condutores horizontais e hastes verticais. Eletrodos de aterramento muito próximos fazem com que a corrente

dissipada por cada eletrodo afete a tensão na superfície do outro eletrodo e com isso a dissipação de corrente dos eletrodos é reduzida [3]. Assim, a partir de um certo ponto o aumento na quantidade de eletrodos (condutores horizontais ou hastes) deixa de apresentar uma redução efetiva no valor da resistência de aterramento da malha de terra. Como regra geral utiliza-se como menor distância entre condutores horizontais e hastes o valor de 3 m.

Como a malha de terra a ser usada na casinhola será um misto de condutores horizontais e hastes, a formulação desenvolvida por Schwarz é aplicável. Para um solo com resistividade de 100 Ω.m a resistência de quatro condutores formando uma malha retangular com 5 m de comprimento por 3 m de largura, com uma haste em cada vertice será dada por:

$$\mathsf{R}_{\mathsf{MALHA}} = \frac{\mathsf{R}_{1} \; \mathsf{R}_{2} - \mathsf{R}_{\mathsf{MUTUA}}^{2}}{\mathsf{R}_{1} + \mathsf{R}_{2} - 2 \; \mathsf{R}_{\mathsf{MUTUA}}} = \frac{12,02 \times 10,41 - 8,62^{2}}{12,02 + 10,41 - 2 \times 8,62} = 9,80 \; \Omega$$

onde

$$\begin{split} L_{C} = L_{COND} + L_{HASTES} = \sum_{i=1}^{n_{COND}} \ell_{COND\_i} + n_{HASTES} \ell_{HASTE} = 5 + 5 + 3 + 3 + 4 \times 3 = 28 m \\ A = L \times C = 3 \times 5 = 15 m^{2} \end{split}$$

 $d_{_{COND}}=6,2~mm \qquad d_{_{HASTE}}=20\,mm \qquad L_{_H}=3~m$ 

$$R_{\text{COND}} = \frac{\rho}{\pi L_{\text{C}}} \left[ \ln \left( \frac{2 \ \text{L}_{\text{C}}}{\sqrt{\text{d}_{\text{cond}} \text{h}}} \right) + \frac{\text{k}_{1} \text{L}_{\text{C}}}{\sqrt{\text{A}}} - \text{k}_{2} \right] = \frac{100}{\pi \times 28} \left[ \ln \left( \frac{2 \times 28}{\sqrt{0,0062 \times 0,5}} \right) + \frac{1,139 \times 28}{\sqrt{15}} - 4,578 \right] = 12,02 \ \Omega$$

$$R_{\text{HASTES}} = \frac{\rho}{2\pi n_{\text{H}} \ell_{\text{HASTE}}} \left[ \ln \left( \frac{2 \ell_{\text{HASTE}}}{d_{\text{H}}} \right) + \frac{2k_{1} \ell_{\text{HASTE}}}{\sqrt{A}} \left( \sqrt{n_{\text{H}}} - 1 \right)^{2} \right] = \frac{100}{2\pi \times 4 \times 3} \left[ \ln \left( \frac{2 \times 3}{0,02} \right) + \frac{2 \times 1,139 \times 3}{\sqrt{15}} \left( \sqrt{4} - 1 \right)^{2} \right] = 10,41 \Omega$$

$$R_{\text{MUTUA}} = \frac{\rho}{\pi L_{\text{C}}} \left[ \ln \left( \frac{2 L_{\text{C}}}{\ell_{\text{HASTE}}} \right) + \frac{k_{1} L_{\text{C}}}{\sqrt{A}} - k_{2} + 1 \right] = \frac{100}{\pi \times 28} \left[ \ln \left( \frac{2 \times 28}{3} \right) + \frac{1,139 \times 28}{\sqrt{15}} - 4,578 + 1 \right] = 8,62 \Omega$$
para  $h = 0 \implies k_{1} = 1,41 - 0,04 \frac{L}{C} \qquad k_{2} = 5,50 + 0,15 \frac{L}{C}$ 

para h = 
$$\sqrt{A}/10 \Rightarrow k_1 = 1,20 - 0,05 L/C \quad k_2 = 4,68 + 0,10 L/C$$
  
para h =  $\sqrt{A}/6 \Rightarrow k_1 = 1,13 - 0,05 L/C \quad k_2 = 4,40 - 0,05 L/C$ 

#### 2.1.4 Conexão dos transformadores dos aerogeradores e respectivos para-raios

Feita a transição de linha aérea para cabo isolado, cria-se um ramal no qual vários aerogeradores poderão ser conectados. Neste exemplo será analisado o caso de cinco aerogeradores conectados no ramal. Cada aerogerador tem o seu respectivo transformador elevador e a distância entre as casinholas dos aerogeradores varia entre 80 e 400 m. A figura 3 ilustra a conexão de um aerogerador. No ponto de conexão do cabo isolado é instalado o para-raios. A partir da conexão dos para-raios, um trecho de cabo isolado com até 3 m de comprimento é usado para conectar os terminais do enrolamento de alta tensão do transformador elevador. O transformador elevador é representado pela capacitância para massa do enrolamento de alta tensão. O lado de alta tensão, neste exemplo, é conectado em  $\Delta$ . Do ponto de terra do transformador até a malha de terra existirá um cabo terra formado por dois condutores de cobre com seção de 25 mm<sup>2</sup>. O comprimento A indutância desse trecho deve ser considerada e como o aterramento é feito em dois pontos diferentes da malha de terra a indutância a considerar será a metade desse valor, ou seja:

$$L_{\text{TERRA_TF}} = \frac{1}{2} \times \frac{\mu_0}{2\pi} \left[ \frac{1}{4} + \ln\left(\frac{2 \times 2}{0,0031}\right) - 1 \right] \times 2 = 1,28 \ \mu\text{H}$$

2.1.5 Indutância de aterramento do cabo de descida do para-raios da torre

A indutância do cabo de descida na torre da turbina e aerogerador foi considerada como sendo de 30 µH.

2..1.6 Conexão dos para-raios no ponto de transição de linha aérea para cabo isolado

No ponto de derivação de linha aérea para cabo isolado serão instalados para-raios e as buchas de terminação dos cabos isolados. A indutância do cabo de descida dos para-raios deve ser incluída na simulação. Uma cadeia

com dois isoladores de disco foi considerada para simular o isolamento da linha aérea de 34.5 kV nesse ponto. A capacitância das buchas de terminação também foi considerada.



Figura 2 - Detalhe da conexão dos aerogeradores

#### 2.2. ESCOLHA DA TENSÃO NOMINAL DOS PARA-RAIOS

Como o trecho de 34,5 kV deste sistema usualmente apresenta neutro isolado ou aterrado por resistência elevada, os para-raios podem vir a ser submetidos à tensão entre fases do sistema durante a ocorrência de faltas. A figura 3 mostra a componente resistiva da corrente de fuga dos para-raios que podem vir a ser utilizados. Será escolhido o para-raios com tensão nominal de 36 kV.



Figura 3 - Componente resistiva da corrente através dos para-raios

Os cabos usados nos ramais dos aerogeradores são dimensionados em função da potência gerada, isto é, a quantidade de aerogeradores no ramal e da queda de tensão admissível. A bitola irá variar de 70 mm<sup>2</sup> para conexão dos três aerogeradores no final do ramal e 150 mm<sup>2</sup> para conexão dos dois primeiros aerogeradores do ramal. Os comprimentos dos lances de cabos são mostrados na tabela 1.

| $\textbf{Poste} \rightarrow \textbf{AE-1}$ | $AE-1 \rightarrow AE-2$     | $\textbf{AE-2} \rightarrow \textbf{AE-3}$ | $AE-3 \rightarrow AE-4$    | $AE-4 \rightarrow AE-5$    |
|--------------------------------------------|-----------------------------|-------------------------------------------|----------------------------|----------------------------|
| 150 mm <sup>2</sup> - 82 m                 | 150 mm <sup>2</sup> - 250 m | 70 mm <sup>2</sup> - 500 m                | 70 mm <sup>2</sup> - 218 m | 70 mm <sup>2</sup> - 261 m |

| Potência | Grupo de<br>conexão | Tensões      | Isolamento |             | Capacitâncias      |
|----------|---------------------|--------------|------------|-------------|--------------------|
|          |                     |              | 60 Hz      | NBI         | Capacitancias      |
| 1600 MVA | Dyn1                | AT - 34,5 kV | AT - 70 kV | AT - 200 kV | AT – massa – 1 nF  |
|          |                     | BT - 690 V   | BT - 10 kV | -           | BT – Massa – 10 nF |

Caracteristicas de transformador elevador dos aerogoradore

# 3.0 - INCIDÊNCIA DE DESCARGAS

As descargas atmosféricas podem atingir:

- As torres das turbinas e aerogeradores neste caso a corrente de impacto se propaga pelo cabo de terra e será dispersa pela malha de terra;
- As redes aéreas do aproveitamento eólico as ondas de corrente e tensão decorrentes desses impactos nas linhas aéreas de 34,5 kV irão propagar-se pelos cabos e atingir os transformadores elevadores dos aerogeradores.

A densidade de descargas atmosféricas em uma dada região, geralmente pode ser encontrada no banco de dados do INPE (http://www.inpe.br). Contudo neste trabalho se recorrerá ao procedimento tradicional de estimar esse valor a partir do nível isoceráunico da região, aqui considerado igual a 50 dias de trovoada por ano. Conforme a NBR 5149:2001, a densidade de descargas atmosféricas pode ser estimada por:

$$N_{g} = 0.04 \times T_{D}^{1.25} = 0.04 \times 50^{1.25} = 5.32 \text{ raios/km}^{2} \cdot \text{ano} ,$$

Sendo  $T_D$  – o nível isoceráunico, dado em dias com observação de trovoadas por ano.

Linhas aéreas de média tensão captam as descargas que cairiam em uma faixa de solo com largura igual à altura do condutor mais elevado. Neste caso, será considerada uma altura da linha igual a 12 metros. O comprimento total de linhas de 34,5 kV no empreendimento é de 20 km. Dessa forma, a área de captação de descargas atmosféricas pelas linhas de 34,5 kV será de 0,48 km<sup>2</sup>.

# O número esperado de descargas captado pelas linhas de 34,5 kV será então de 4,1 raios/ano.

Os raios captados podem apresentar diferentes amplitudes de corrente, desde raios com amplitude na faixa de 2000 A, a raios com amplitude de 200 kA. Quanto maior a amplitude da descarga, mais rara será a ocorrência desse impacto. A probabilidade acumulada da ocorrência de uma amplitude de corrente de raio acima de um dado valor pode ser expressa por:

$$F_1(I > I_f) = 1/1 + (I/31)^{2,6}$$
 2kA < I < 200 kA

O intervalo de recorrência ou MTBF (MEAN TIME BETWEEN FLASHES), isto é, o número de anos entre duas descargas de uma dada amplitude1 será dado por:



Figura 4 – Intervalo de recorrência estimado para impactos nas linhas de 34,5 kV

<sup>&</sup>lt;sup>1</sup> Deve ser considerado que o tratamento sendo dado ao problema é estatístico e se refere a valores médios sobre intervalos de tempo grandes, é perfeitamente possível que ocorram duas descargas de elevada amplitude até no mesmo dia e depois exista um intervalo muito grande para outra descarga.

Pode ser notado que o impacto de descargas de amplitude abaixo de 10 kA e acima de 42 kA se dá a intervalos de médios acima de 30 anos. A maior parte das descargas irá ocorrer na faixa de 10 a 30 kA.

# 4.0 - SIMULAÇÕES EFETUADAS

Usando o ATP, será simulado o impacto de uma descarga com amplitude de 65 kA, cujo intervalo de recorrência é de 80 anos. As simulações serão efetuadas considerando a resistividade do solo com valores de 100  $\Omega$ .m e 1000  $\Omega$ .m, de forma a avaliar o efeito da resistência dos aterramentos nas sobretensões que atingem os transformadores elevadores.

Conforme mostrado na figura 5, os impactos serão simulados nos seguintes pontos:

- No poste de transição de linha aérea para cabo isolado;
- No mastro para-raios instalado na torre dos aerogeradores.

Convém ressaltar que a solicitação sobre o isolamento de um enrolamento no transformador decorre da:

- Diferença de tensão entre o terminal de fase e a massa (núcleo, tanque)
- Diferença de tensão entre os terminais do enrolamento (fase-fase ou fase-neutro)

Como transformador elevador é aterrado por meio de dois cabos de 25 mm<sup>2</sup> com até 2 m de comprimento, existe uma indutância entre o ponto de referência à massa e a malha de terra. No caso de um impacto na linha aérea de 34,5 kV, os para-raios atuam e a corrente é injetada na malha de terra. No caso de impacto na torre, a corrente desce pelo cabo de aterramento do aerogerador e é injetado diretamente na malha de terra. Dessa forma, se evita a passagem da maior parte da corrente de impulso através do ramal de aterramento do transformador do aerogerador.



| Figura 5 – Pontos | de impacto d | las descargas |
|-------------------|--------------|---------------|
|-------------------|--------------|---------------|

| ρ (Ω.m) | R <sub>AT_POSTE</sub> (Ω)                                         | R <sub>MALHA</sub> (Ω) | V <sub>MALHA</sub> (kV) | V <sub>AT</sub> (kV) | V <sub>BT</sub> (kV) |  |  |
|---------|-------------------------------------------------------------------|------------------------|-------------------------|----------------------|----------------------|--|--|
|         | Impacto 65 kA no poste de transição linha aérea para cabo isolado |                        |                         |                      |                      |  |  |
| 100     | 13,8                                                              | 9,8                    | 218                     | 169                  | 4,9                  |  |  |
| 1000    | 137,6                                                             | 98,0                   | 513                     | 170                  | 8,9                  |  |  |
|         | Impacto 65 kA no topo da torre do aerogerador                     |                        |                         |                      |                      |  |  |
| 100     | 13,8                                                              | 9,8                    | 289                     | 122                  | 6,2                  |  |  |
| 1000    | 137,6                                                             | 98,0                   | 549                     | 141                  | 9,6                  |  |  |

A figura 6 mostra a solicitação de tensão que aparece nos enrolamentos de alta e baixa tensão do transformador elevador de um aerogerador quando ocorre um impacto de 65 kA na torre da turbina. A tensão mostrada vem a ser a tensão entre o terminal de fase e o ponto de aterramento do transformador. O potencial da massa (tanque) sofre forte elevação, mas



Figura 6 - Solicitação sobre o transformador elevador durante impacto de 65 kA na torre



Figura 7 – Solicitação sobre os transformadores durante impacto de 65 kA na linha aérea

# 5.0 - CONCLUSÃO

Os impactos de descargas atmosféricas em um aproveitamento eólico podem ocorrer nas linhas aéreas que são usadas para interligar os diversos agrupamentos de aerogeradores ou nas torres que suportam a turbina e o aerogerador. Foram simulados impactos de 65 kA, cujo intervalo de recorrência é da ordem de 80 anos. Foi avaliada a sobretensão, medida entre terminal de fase e massa, que alcança os enrolamentos de alta e baixa tensão do transformador elevador do aerogerador. Não foram encontrados valores acima de 85% do NBI dos enrolamentos.

As dimensões dos aterramentos presentes num aproveitamento eolico são pequenas de forma que a propagação das correntes de surto se faz em menos de 200 ns. Com isso os sistemas de aterramento podem ser representados considerando-se apenas a resistência de terra calculada (ou medida) na frequência industrial. Faz-se no entanto necessário considerar a indutância dos links de aterramento, tais como, o cabo de descida dos para-raios instalados nos postes da linha aérea de 34,5 kV e os cabos de conexão à terra dos dos para-raios junto aos transformadores elevadores. Também se faz necessário considerar a indutância dos cabos de conexão à terra dos cabos de conexão à terra dos dos cabos de conexão à terra do transformador elevador.

Ocorrido o impacto da descarga atmosférica, a sobretensão no topo do poste faz com que ocorra uma disrupção para os condutores de fase. Devido à indutância do cabo de descida dos para-raios uma parcela considerável de corrente vai circular pela blindagem do cabo. Assim, haverá corrente devida à descarga atmosférica circulando tanto nos condutores de fase, como na blindagem. Ao chegar à casinhola onde fica abrigado o transformador elevador, uma parcela da corrente nos condutores de fase é desviada pelos para-raios para a malha de terra, onde se junta a uma parcela da corrente que circula pela blindagem. Essas correntes são então dissipadas pela malha de terra local. Dessa forma a malha de aterramento sofre uma elevação transitória de potencial.

A tensão aplicada sobre o isolamento do enrolamento de alta tensão do transformador elevador ser a que aparece entre os terminais de fase e a que aparece no ponto de aterramento da massa do transformador. Isso faz com que a amplitude da sobretensão no transformador elevador seja praticamente independente da resistência de aterramento das malhas de aterramento em cada aerogerador. Nas simulações efetuadas, observou-se que a sobretensão é mais elevada no transformador elevador do primeiro aerogerador do ramal e reduzida nos demais. Também foi verificado que os efeitos do impacto da descarga atmosférica são apreciáveis apenas no ramal conectado ao poste onde ocorreu o impacto da descarga atmosférica. A propagação do surto através da linha aérea de 34,5 kV faz com que o efeito nos agrupamentos de aerogeradores nas vizinhanças seja bastante reduzido.

Conclui-se então, que não se faz necessário recorrer a malhas de aterramento muito dispendiosas para tratar de obter valores de resistência de aterramento na faixa de 2  $\Omega$ , posto que o efeito dessa redução de resistência de aterramento, no que tange à proteção do isolamento dos transformadores elevadores é inócuo. É importante ressaltar que devido ao impacto da descarga atmosférica, haverá um surto de corrente circulando pelo cabo isolado e esse surto de corrente chegará a cada um dos transformadores elevadores elevadores.

#### 6.0 - REFERÊNCIAS BIBLIOGRÁFICAS

(1) P. M. Anderson, Analysis of Faulted Power Systems, New York: Wiley, 1995, p. 470.

(5) IEEE Guide for Safety in AC Substation Grounding - IEEE Std 80-2000 -

(6) Surge Arresters – Part 4: Metal-oxide surge arresters without gaps for a.c. systems, IEC 60099-4 – Edition 2.2 – 2009-05

(7) IEEE Guide for Application of Metal-Oxide Surge Arresters for Alternating-Current Systems, IEEE Standard C62.22-2009, Jul. 2009.

(8) S. S. Wanderley, P. M. Miguel, "Comparação dos modelos de para-raios utilizados para simulação no ATP", XXI SNPTEE, 2011, Florianópolis, SC, Brasil.

#### 7.0 - DADOS BIOGRÁFICOS



Pablo Mourente Miguel, brasileiro naturalizado, nascido na Espanha em 1951.

Engenheiro Eletricista (1975) pela UFRJ, Mestre (1981) e Doutor (1984) em Ciências da Engenharia Elétrica pela COPPE/UFRJ.

Área de atuação: Transitórios eletromagnéticos, coordenação de isolamento e proteção de sistemas elétricos.

Para maiores detalhes, consultar http://lattes.cnpq.br/6049316115897758

Ademar Brehmer Rohregger – Formado em Engenharia Elétrica pela UDESC em 2000. Cursou disciplinas do LABSPOT da UFSC em 2006, com especialização em dinâmica e controle. Atualmente cursa MBA com Especialização no Setor Elétrico na Fundação Getúlio Vargas, com término previsto para 2014.

Desde 2008 é o Coordenador da equipe de Eletromecânica da GeoEnergy/Energy Engenharia. A área de atuação compreende a elaboração do projeto executivo de Parques Eólicos e Pequenas Centrais Hidroelétricas.